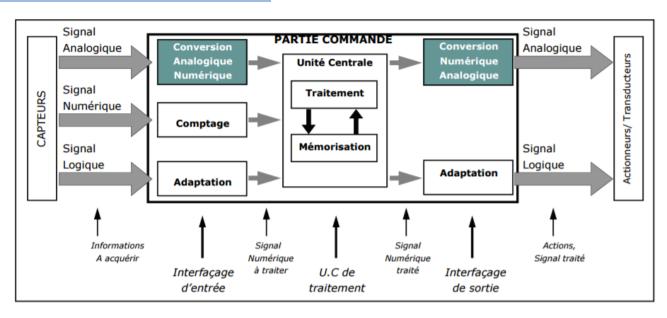
Les convertisseurs de données

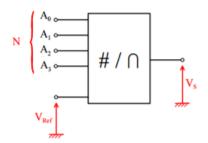

Les fonctions de conversions de données sont utilisées à chaque fois qu'il est nécessaire de convertir une grandeur analogique (valeur de tension) en son équivalent « numérique » (un nombre) ou vice-versa.


C'est un interfaçage entre le monde "extérieur" (température, intensité lumineuse, signal audio, vidéo etc..) et un système numérique (ou l'information est traitée et sauvegardée sous forme de nombres [valeurs binaires]).

Rappel sur la nature des signaux :

- Un signal est dit analogique si l'amplitude de la grandeur physique le représentant peut prendre une **infinité** de valeurs dans un intervalle donné.
- Un signal est dit numérique si l'amplitude de la grandeur physique le représentant ne peut prendre qu'un nombre **fini** de valeurs. En général ce nombre fini de valeurs est une puissance de 2.

Chaine de traitement de l'information



Convertisseur Numérique/Analogique:

<u>Définition</u>: Le convertisseur Numérique/Analogique (abrégé CNA) est un dispositif électronique (généralement un circuit intégré) permettant d'obtenir en sortie une tension dont la valeur est l'image du mot binaire présenté en entrée.

Symbôle d'un CNA à 4 bits :

L'entrée N est une valeur numérique binaire codée sur 4 bits donc comprise entre $(0)_{10}$ et $(15)_{10}$.

V_{Ref} est la tension de référence (équivalent à la tension maximale).

V_S est la tension de sortie.

La tension pleine échelle :

<u>Définition</u>: La tension pleine échelle d'un CNA est la différence entre la plus grande et la plus petite tension délivrée en sortie.

Cette tension pleine échelle est obtenue en appliquant à l'entrée du CNA la valeur numérique la plus grande, c'est-à-dire lorsque tous les bits d'entrée sont au niveau logique haut (1). Elle est égale à la tension de référence V_{Ref} si la tension minimale est de 0 V.

Cette tension pleine échelle est fixée à la fabrication du composant et est donnée dans les caractéristiques techniques du constructeur.

Le quantum d'un CNA:

En physique, **quantum** (mot latin signifiant « combien » et dont le pluriel s'écrit « quanta ») représente la plus petite mesure indivisible d'une grandeur quelconque.

<u>Définition</u>: Le quantum d'un Convertisseur Numérique/Analogique, noté Q, peut aussi être appelé « résolution » ou encore « pas de progression ». C'est la plus petite variation de tension s'ajoutant à la sortie lorsque la valeur binaire d'entrée est augmentée de 1 (lorsqu'elle est incrémentée).

D'une manière générale Q s'exprime de la manière suivante :

$$Q = \frac{V_{ech}}{2^{n}-1}$$

Avec: Vech la tension pleine échelle (en Volt).

n le nombre de bit du convertisseur.

Donc Q s'exprime en Volt. C'est une tension.

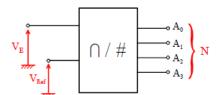
Calcul de la tension de sortie d'un CNA:

Pour déterminer la valeur de la tension de sortie V_s en fonction de la valeur binaire N appliquée à l'entrée associée à la valeur décimale $(N)_{10}$. On a :

$$V_S = (N)_{10} \times Q$$

Exercice n°1: Soit un CNA à 5 bits. La tension de sortie V_s vaut 0,2V lorsque le mot d'entrée est 00001.

• Quelle est la valeur de V₅ correspondant à la pleine échelle ?


Exercice n°2: Soit un CNA à 5 bits. Lorsque le mot d'entrée est 10100, la tension de sortie V_s vaut 5V.

• Que vaut V_s pour un mot d'entrée de 11101?

Le Convertisseur Analogique/Numérique :

<u>Définition</u>: Le convertisseur Analogique/Numérique (abrégé CAN) est un dispositif électronique (généralement un circuit intégré) permettant d'obtenir en sortie une grandeur numérique codée sur n bits dont la valeur est l'image de la grandeur analogique (tension) présentée en entrée.

Symbôle d'un CAN à 4 bits :

V_E est la tension d'entrée à convertir.

V_{Ref} est la tension de référence.

N est la valeur numérique binaire résultat de la conversion. N est codée sur 4 bits donc comprise entre $(0)_{10}$ et $(15)_{10}$.

La tension pleine échelle :

<u>Définition</u>: La tension pleine échelle d'un CAN est la différence entre la plus grande et la plus petite tension qu'il peut traiter.

Le quantum d'un CNA:

<u>Définition</u>: Le quantum d'un Convertisseur Analogique/Numérique, noté Q, est la plus petite variation de tension appliquée à l'entrée qui augmente (ou diminue) la valeur en sortie de 1.

D'une manière générale Q s'exprime de la même manière que pour un CNA : $Q = \frac{V_{ech}}{2^n - 1}$

Avec: V_{ech} la tension pleine échelle (en Volt)

n le nombre de bit du convertisseur.

Calcul de la valeur binaire en sortie d'un CAN:

Cette opération se fait en trois étapes :

- ullet Division de la tension à convertir V $_{\scriptscriptstyle extsf{E}}$ par le quantum Q : $N_d=rac{V_E}{Q}$
- Elimination de la partie décimale de N_d, on garde seulement la partie entière.
- Conversion de N_d en binaire.

Exercice n°3 : Le CAN d'entrée d'une carte d'acquisition possède les caractéristiques suivantes : Gamme 0 à 5,12V et 10 bits.

- Quelle est la valeur numérique maximale N_{max} de sortie de ce CAN ?
- Quelle est sa tension pleine échelle ?
- Quelle est sa résolution ?

Exercice n°4 : Pour l'équipement des salles de chimie du lycée, on a besoin de cartes d'acquisition pouvant mesurer des tensions allant de 0 à 4,5V à 10mV près. Le modèle le moins cher trouvé dans le commerce contient un CAN 8 bits de calibre 5,0V.

- Déterminer sa résolution.
- Ce modèle correspondait-il aux spécifications?
- En ayant la même gamme, combien le CAN devrait-il au minimum avoir de digits pour que sa précision soit suffisante ?

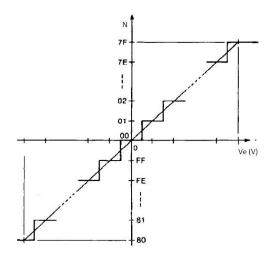
Exercice n°5 : Soit un CNA à 8 bits ayant une pleine échelle égale à 10V. Soit l'octet A=10010110, appliqué à l'entrée de ce convertisseur.

• Calculer la tension de sortie pour ce mot binaire.

Exercice n°6: Soit un CNA à 10 bits. La valeur pleine échelle est de 5V.

• Calculer la tension de sortie V_s pour un mot d'entrée A=1100101101

Exercice n°7: Un multimètre numérique contient un CAN 16 digits.


- Quelle est la valeur numérique de sortie maximale de ce CAN ?
- Calculer la résolution du CAN quand il est utilisé sur la gamme -20V / +20V (calibre 20V du multimètre).

Exercice n°8: Soit les caractéristiques suivantes d'un convertisseur.

Conversion unipolaire

Conversion bipolaire

- Quelle est la résolution de ce convertisseur ?
- Que signifient les termes unipolaire et bipolaire ?
- Expliquer comment passer de la conversion unipolaire à la conversion bipolaire ?